As a freelancer design draughtsperson, I have received widespread experience for my contributions in both mechanical and electrical engineering draughting being involved in product development, presentation, and design reviews. My work involves a combination of technical expertise and creativity. I also brings together technologies from different environments and works inventively. In so doing I am able to translate ideas into working products that meet the needs. As a blogger, I strive to inspire my readers by bringing you content through this value added service. I endeavour to help designers and other professionals improve their creativity and productivity. My primary function is to identify the specific needs of professionals sector within the desgn industry and then to meet these requirements in a professional, time sensitive and cost-effective manner. I also offer services as complex as Concept Design, Project Planning and Compiling Design Applications or Presentations. My team of skilled and experienced freelance professionals of professionals are dedicated to providing reliable and professional service that is on time every time.In my Design and Drawing office, I use the latest Synchronous 3D modelling software. On site, I use laser and infrared reflector-less surveying equipment. I also provide layout drawing, design, shop detailing and mechanical surveying depending on the clients requirements. This is my design journey.....

Saturday, August 27, 2016

Types of Draughting Services

Technical drawing is essential for communicating ideas in industry and engineering. It also is a legal document (that is, a legal instrument), because it communicates all the needed information about "what is wanted" to the people who will expend resources turning the idea into a reality. It is thus a part of a contract; the purchase order and the drawing together, as well as any ancillary documents (engineering change orders [ECOs], called-out specs), constitute the contract. Thus, if the resulting product is wrong, the worker or manufacturer are protected from liability as long as they have faithfully executed the instructions conveyed by the drawing. If those instructions were wrong, it is the fault of the engineer. Because manufacturing and construction are typically very expensive processes (involving large amounts of capital and payroll), the question of liability for errors has great legal implications as each party tries to blame the other and assign the wasted cost to the other's responsibility. This is the biggest reason why the conventions of engineering drawing have evolved over the decades toward a very precise, unambiguous state. For centuries, until the post-World War II era, all engineering drawing was done manually by using pencil and pen on paper or other substrate (e.g., vellum, mylar). Since the advent of computer-aided design (CAD), engineering drawing has been done more and more in the electronic medium with each passing decade. Today most engineering drawing is done with CAD, but pencil and paper have not disappeared. Some of the tools of manual drafting include pencils, pens and their ink, straightedges, T-squares, French curves, triangles, rulers, protractors, dividers, compasses, scales, erasers, and tacks or push pins. (Slide rules used to number among the supplies, too, but nowadays even manual drafting, when it occurs, benefits from a pocket calculator or its onscreen equivalent.) And of course the tools also include drawing boards (drafting boards) or tables.

A structural drawing, a type of Engineering drawing, is a plan or set of plans for how a building or other structure will be built. Structural drawings are generally prepared by registered professional structural engineers, and informed by architectural drawings. They are primarily concerned with the load-carrying members of a structure. They outline the size and types of materials to be used, as well as the general demands for connections. They do not address architectural details like surface finishes, partition walls, or mechanical systems. The structural drawings communicate the design of the building's structure to the building authority to review. They are also become part of the contract documents which guide contractors in detailing, fabricating, and installing parts of the structure.

An architectural drawing is a technical drawing of a building (or building project) that falls within the definition of architecture. Architectural drawings are used by architects and others for a number of purposes: to develop a design idea into a coherent proposal, to communicate ideas and concepts, to convince clients of the merits of a design, to enable a building contractor to construct it, as a record of the completed work, and to make a record of a building that already exists. Architectural drawings are made according to a set of conventions, which include particular views (floor plan, section etc.), sheet sizes, units of measurement and scales, annotation and cross referencing. Conventionally, drawings were made in ink on paper or a similar material, and any copies required had to be laboriously made by hand. The twentieth century saw a shift to drawing on tracing paper, so that mechanical copies could be run off efficiently. The development of the computer had a major impact on the methods used to design and create technical drawings, making manual drawing almost obsolete, and opening up new possibilities of form using organic shapes and complex geometry. Today we create a vast majority of drawings using CAD software.

An electrical drawing, is a type of technical drawing that shows information about power, lighting, and communication for an engineering or architectural project. Any electrical working drawing consists of "lines, symbols, dimensions, and notations to accurately convey an engineering's design to the workers, who install the electrical system on the job". A complete set of working drawings for the average electrical system in large projects usually consists of: A plot plan showing the building's location and outside electrical wiring; Floor plans showing the location of electrical systems on every floor; Power-riser diagrams showing panel boards; Control wiring diagrams; Schedules and other information in combination with construction drawings.

A plumbing drawing, a type of technical drawing, shows the system of piping for fresh water going into the building and waste going out, both solid and liquid. Within industry, piping is a system of pipes used to convey fluids (liquids and gases) from one location to another. The engineering discipline of piping design studies the efficient transport of fluid. Plumbing is a piping system with which most people are familiar, as it constitutes the form of fluid transportation that is used to provide potable water and fuels to their homes and businesses. Plumbing pipes also remove waste in the form of sewage, and allow venting of sewage gases to the outdoors. Fire sprinkler systems also use piping, and may transport nonpotable or potable water, or other fire-suppression fluids.

A Mechanical systems drawing is a type of technical drawing that shows information about heating, ventilating, and air conditioning. It is a powerful tool that helps analyze complex systems. These drawings are often a set of detailed drawings used for construction projects; it is a requirement for all HVAC work. They are based on the floor and reflected ceiling plans of the architect. After the mechanical drawings are complete, they become part of the construction drawings, which is then used to apply for a building permit. They are also used to determine the price of the project. Arrangement drawings include information about the self-contained units that make up the system: table of parts, fabrication and detail drawing, overall dimension, weight/mass, lifting points, and information needed to construct, test, lift, transport, and install the equipment. These drawings should show at least three different orthographic views and clear details of all the components and how they are assembled. The assembly drawing typically includes three orthographic views of the system: overall dimensions, weight and mass, identification of all the components, quantities of material, supply details, list of reference drawings, and notes. Assembly drawings detail how certain component parts are assembled. An assembly drawing shows which order the product is put together, showing all the parts as if they were stretched out. This will help a welder to understand how the product will go together so he get an idea of where the weld is needed. The assembly drawing will contain the following; information overall dimensions, weight and mass, identification of all the components, quantities of material, supply details, list of reference drawings, and notes. In detail drawings, components used to build the mechanical system are described in some detail to show that the designer's specifications are met: relevant codes, standards, geometry, weight, mass, material, heat treatment requirements, surface texture, size tolerances, and geometric tolerances. A fabricationdrawing is made up of many different parts and has a list of parts that make up the fabrication. In the list, parts are identified (balloons and leader lines) and complex details are included: welding details, material standards, codes, and tolerances, and details about heat/stress treatments.

Post a Comment